<1r>

Dignissime Dne

Quanquam D. Leibnitij modestia in excerptis quæ ex Epistola ejus ad me nuper misisti, \nostratibus/ multùm tribuat mathematicis nostræ gentis circa speculationem quandam infinitarum Serierum de qua jam cœpit esse rumor: nullus dubito tamen quin ille, non tantùm (quod asserit) methodum reducendi quantitates quascunq in ejusmodi series, sed et varia compendia, fortè nostris similia, si non et meliora, adinvenerit. Quoniam tamē ea scire pervelit quæ ab Anglis hâc in re inventa sunt, et ipse ante annos aliquot in hanc speculationem inciderim: ut votis ejus aliqua saltern ex parte satisfacerem nonnulla eorum quæ mihi occurrerunt, ad te transmisi.

Fractiones in infinitas Series reducuntur per divisionem et quantitates radicales per extractionem radicum, perindè instituendo operationes istas in speciebus ac institui solent in decimalibus numeris. Hæc sunt fundamenta harū reductionum; sed extractiones radicum multùm abbreviantur per hoc Theorema.

P+PQmn=Pmn+mnAQ+mn2nBQ+m2n3nCQ+m3n4nDQ+&c.
Ubi P+PQ significat quantitatem cujus radix, vel etiam dimensio, quævis vel radix dimensionis investiganda est, P primum terminum quantitatis ejus, Q reliquos terminos divisos per primum, & mn numeralem indicem dimensionis ipsius P+PQ sive dimensio illa integra sit, sive (ut ita loquar) fracta, sive affermativa sive negativa. Nam sicut Analystæ pro aa, aaa &c scribere solent a2, a3, sic ego pro a, a3, c.a5 &c scribo a12, a32, a53, & pro 1a, 1aa, 1a3 scribo a1, a2, a3. et sic pro aac:a3+bbx scribo aa×a3+bbx13, & pro aab.c:a3+bbx×a3+bbx scribo aab×a3+bbx23 in quo ultimo casu si a3+bbx23 conciapiatur esse P+PQmn in Regula; erit P=a3, Q=bbxa3, m=2, & n=3. Deniq pro terminis inter operandum inventis in quoto, usurpo A, B, C, D &c nempe A pro primo termino Pmn, B pro secundo mnAQ, & sic deinceps. Cæterùm usus Regulæ patebit exemplis.

Exempl: 1. est |cc+xx|seucc+xx12=c+xx2cx48c3+x616c55x8128c7 +7x10256a9+&c.. Nam in hoc casu est P=cc, Q=xxcc, m=1, n=2, A=Pmn=cc12=c. B=mnAQ=xx2c. C=mn2nBQ=x48c3, & sic deinceps.

Exempl: 2. est c5+c4xx5i.e.c5+c4xx515=c+c4xx55c42c8xx+4c4x62x1025c9+&c ut patebit substituendo in allatam Regulam, 1 pro m, 5 pro n, c5 pro P, & c4xx5c5 pro Q. Potest etiam x5 substitui pro P, & c4x+c5x5 pro Q, et tunc evadet c5+c4xx5=x+c4x+c55x4+2c8xx+4c9x+c1025x9 +&c. Prior modus eligendus est si x valde parvum sit, posterior si valde magnum.

<1v>

Exempl 3. Est Ny3aayhoc estN×y3aay13=N×1y+aa3y3+2a49y5+7a681y7+ Nam P=y3. Q=aayy. m=1. n=3. A=Pmn=y3×13=y1. hoc est 1y. B=mnAQ=13×1y×aayy=aa3y3. &c

Exempl. 4. Radix cubica ex quadrato-quadrato ipsius d+e (hoc est d+e43 est d43+4ed133+2ee9d234e381d53+&c. Nam P=d. Q=ed. m=4. n=3. A=Pmn=d43 &c.

Eodem modo simplices etiam potestates eliciuntur. Ut si quadrato-cubus ipsius d+ehoc estd+e5, seud+e51 desideretur: erit juxta Regulam P=d. Q=ed. m=5 & n=1; adeoq A=Pmn=d5, B=mnAQ=5d4e, & sic C=10d3ee, D=10dde3, E=5de4, F=e5, & G=m5n6nFQ=0. Hoc est d+e5=d5+5d4e+10d3ee+10dde3+5de4+e5.

Quinetiam Divisio, sive simplex sit, sive repetita, eandem Regulam perficitur. Ut si 1d+e, hoc estd+e1sived+e11 in seriem simplicium terminorum resolvendum sit: erit juxta Regulam P=d. Q=ed. m=1. n=1. & A=Pmn=D11=d1 seu 1d. B=mnAQ=1×1d×ed =edd, & sic C=eed3, D=e3d4 &c Hoc est 1d+e=1dedd+eed3e3 d4+&c.

Sic et d+e3 (hoc est unitas ter divisa d+e vel semel per cubum ejus,) evadit 1d33ed4+6eed510e3d6+&c.

Et N×d+e13 hoc est N divisum radicem cubicam ipsius d+e evadit N×1d13e3d43+2ee9d7314e381d108+&c

Et N×d+e35 (hoc est N divisum per radicem quadrato-cubicam ex cubo ipsius d+e, sive Nd3+3dde+3dee+e3 evadit N×1d353e5d95+12ee25d13552e3125d185&c.

Per eandem Regulam Genesses Potestatum, \Divisiones/ per potestates aut quantitates radicales, \&/ extractiones radicum altiorum in numeris etiam commodè instituuntur.

Extractiones Radicum affectarum in speciebus imitantur earum extractiones in numeris, sed methodus Vietæ et Oughtredi nostri huic negotio minùs idonea est, Quapropter aliam excogitare adactus sum cujus specimen exhibent sequentia Diagrammata ubi {illeg}|dextr|a columna prodit substituendo in media columnâ Valores ipsorum y, p, q, r &c in sinistra columna expressos. Prius Diagramma exhibet resolutionem hujus numeralis æquationis y32y5=0; et hic in supremis numeris pars negativa radicis subducta de parte affirmativa relinquit absolutam Radicem 2|09455148 et posterius Diagramma exhibet resolutionem hujus literariæ æquationis y3+axy+aayx32a3=0.

<2r>

_________________________._____________.__________________________________________________ +2,100000000,00544852 +2,09455148 _________________________._____________.__________________________________________________ 2+p=y y3 2y 5 +8+12p+6pp+p3 402p 5 p3summap3 1+10p+6pp+p3 _________________________._____________.__________________________________________________ +0,1+q=p +p3 +6pp +10p 1 +0,001+00,03q+0,3qq+q3 +0,061+01,20q+6,3qq +1,001+10,0q 1 q3summaq3 +0,061+11,23q+6,3qq+q3 _________________________._____________.__________________________________________________ 0,0054+r=q +q3 +6,3qq +11,23q +0,061 0,0000001+00,000r+&cq3 +0,000183700,068q 0,0606420+11,23q +0,061 q3summaq3 0,0005416+11,162r _________________________._____________.__________________________________________________ 0,00004852+s=r ._____________. _ _

_ _________________________._____________.__________________________________________________ ax4+xx64a+131x3512aa+509x416384a3&c _________________________._____________.__________________________________________________ a+p=y y3 +a3+3aap+3app+p3 +axy +aax+axp +aay +a3+aap x3 x3 2a3 2a3 _________________________._____________.__________________________________________________ _________________________._____________.__________________________________________________ 14x+q=p p3 164x3+316xxq&c +3app +316axx32axq+3aqq +axp 14axx+axq +4aap axx+4aaq +aax +aax x3 x3 _________________________._____________.__________________________________________________ _________________________._____________.__________________________________________________ +xx64a+r=q 3aqq +3x44096a&c +316xxq +3x41024a&c 12axq 1128x312axr +4aaq +116axx+4aar x3 x3 6564a3 6564a3 116aax 116aax _________________________._____________.__________________________________________________ _ 000+4aa12ax+131128x315x44096a+131x3512aa+509x416384a3.000

In priori diagrammate primus terminus valoris ipsorum p, q, r, in prima columna invenitur dividendo primum terminum summæ proxima|è| superioris per coefficientem secundi termini ejusdem summæ: et idem terminus eodem ferè modo invenitur in secundo diagrammate. Sed hic præcipu{illeg}|a| difficultas est in inventione primi termini radicis: id quod methodo generali perficitur, sed hoc brevitatis gratia jam prætereo, ut et alia quædam quæ ad concc|i|nnandam operationem spectant. Neq hic compendia tradere vacat, sed dicam tantum in genere, quod radix cujusvis æquationis semel extracta pro regula resolvendi consimiles æquationes asservari possit; & quod ex pluribus ejusmodi regulis, regulam generaliorem plerumq efformare liceat; quodq radices omnes, sive simplices sint siv{illeg}|e| affectæ, modis infinitis extrahi possint, de quorum simplicioribus itaq semper consulendum est.

<2v>

Quomodo ex {illeg}|æ|quationibus, sic ad infinitas series reductis, areæ & longitudines curvarum, contenta et superficies solidorum, vel quorumlibet segmentorum figurarum quarumvis eorumq centra gravitatis determinantur, et quomodo etiam curvæ omnes Mechanicæ ad ejusmodi æquationes infinitarum serierum reduci possint, indeq Problemata circa illas resolvi perinde ac si geometricæ essent, nimis longum foret describere. Sufficiat specimina quædam talium Problematum recensuisse: inq iis brevitatis gratia literas A, B, C, D &c pro terminis seriei, sicut sub initio, nonnunquam usurpabo.

1. Si ex dato sinu recto vel sinu verso arcus desideretur: sit radius r et sinus rectus x eritq arcus =x+x36rr+3x540r4+5x7112r6+&c. hoc est =x+1×1×xx2×3×rrA+3×3xx4×5rrB+5×5xx6×7rrC+7×7xx8×9rrD+&c. Vel sit d diameter ac x sinus versus, et erit arcus =d12x12+x326d12+3x5240d32+5x72112d52+&c hoc est =dxin1+x6+3xx40d+5x3112dd+&c.

2. Si vicissim ex dato arcu desiderentur sinus: sit radius r et arcus z, eritq sinus rectus {illeg} =zz36rr+z5120r4z75040r6+z936288r8&c, hoc est =zzz2×3rrAzz4×5rrBzz6×7rrC&c; Et sinus versus =zz2rz424r3 +z6720r5z84032r7+&c, hoc est zz1×2rzz3×4rrAzz5×6rrBzz7×8C.

3. Si arcus capiendus sit in ratione data ad ali{illeg}|u|m arcum: esto diameter =d, chorda arcûs dati =x, & arcus quæsitus ad arcum illum datum ut n ad 1; eritq arcus quæsiti chorda =nx+1nn2×3ddxxA+9nn4×5ddxxB+ 25nn6×7ddxxC+36nn8×9ddxxD+49nn10×11ddxxE+&c Ubi nota quod cùm n est numerus impar, series desinet esse infinita, & evadet eadem quæ prodit per vulgarem Algebram ad multiplicandum datum angulum per istum numerum n.

4. Si in axe alterutro AB ellipseos ADB Figure (cujus centrum C & axis alter DH) detur punctum aliquod E circa quod recta EG occurrens Ellipsi in G motu angulari feratur, et ex data area sectoris Ellipticæ BEG quæratur recta GF quæ a puncto G ad axem AB normalitur {sic} demittitur: esto BC=q, DC=r, EB=t, ac duplum areæ BEG=z; et erit GF=ztqz36rrt4+10qqqqt120r4t7z5280q3+504qqt225qtt5040r6t10z7+&c.
Sic itaq Astronomicum illud Kepleri Problema resolvi potest.

5. In eâdem Ellipsi si statuatur CD=r, CBqCD=c, & CF=x, erit arcus Ellipticus DG=x+16ccx3+110rc3x5+114rrc4x7+118r3c5x9+122r4c6x11+&c 140c4128rc5 124rrc6122r3 c7 +1112c6+148rc7+388rrc8 51152c85352rc9 +72816c10

<3r>

Hic numerali|e|s coefficientes supremorum terminorum 16.110.114&c sunt in musica progressione, & numerales coefficientes omnium inferiorum in una quaq columna prodeunt multiplicando continuò numeralem coefficientem supremi termini per terminos hujus progressionis 12n12.33n34.54n56.75n78.96n910 &c: ubi n significat numerum dimensionum ipsius c in denominatore istius supremi termini. E.g. ut terminorum infra 122r4c6, numerales coefficientes inveniantur, pono n=6, ducoq 122 (numeralem coefficientem ipsius 122r4c6) in12n12 hoc est in1; et prodit 122 numeralis coefficiens termini proximè inferioris; dein duco hunc 122in33n34 sive inn34 hoc est in34 & prodit 388 numeralis coefficiens tertij termini in ista columna. Atq ita 388×54n56 facit 5352 num: coeff: q:ti termini & 5352× 75n78 facit 72816 numeralem coefficientem infimi termini Idem in alijs ad infinitum columnis præstari potest, adeoq valor ipsius DG per hanc regulam pro lubitu produci.

Ad hæc si BF dicatur x, sitq r latus rectum Ellipseos & e=rAB; erit arcus Ellipticus
BG=rxin 1+232e} 3r x 2 +3e 58ee } 5rr xx +4 9e +234ee 716e3 } 7r3 x3 10 +30e 1234ee +918e3 45128e4 } 9r4 x4 +&c.
Quare si ambitus totius Ellipseos desideretur: biseca CB in F, & quære arcum DG per prius Theorema & arcum GB per posterius.

6 Si vice versa ex dato arcu Elliptico DG quæratur sinus ejus CF, tum dicto CD=r, CBqCD=c, & arcu illo DG=z erit
CF=z16ccz3110rc3z5114rrc4z7&c. +13120c4+71420rc5 4935040c6
Quæ autem de Ellipsi dicta sunt, omnia facilè accommodantur ad Hyperbolam: mutatis tantum signis ipsorum c & e ubi sunt imparium dimentionum.

7. Præterea si sit CE Hyperbola cujus Figure Asymptoti AD, AF rectum angulum FAD constituant et ad AD erigantur utcunq perpendicula BC DE occurrentia Hyperbolæ in C & E, & AB dicatur a, BC b, & area BCED z, erit BD=zb+zz2abb0 +z36aab3+z424a3b4+z5120a4b5&c Ubi coefficientes denominatorum prodeunt multiplicando terminos hujus arithmeticæ progressionis, 1,2,3,4,5&c in se continuò. Et hinc ex Logarithmo dato potest numerus ei competens inveniri.

8. Esto VDE Quadratrix cujus vertex V, Figure existente A centro et AE AE diametro circuli ad quem aptatur, et angulo, VAE recto. Demissoq ad AE perpendiculo quovis DB et acta quadratricis tangente DT occurrente axi ejus AV in T: dic AV=a, & AB=x, eritq <3v> BD=axx3ax445a32x6945a5&c. Et VT=xx3a+x415a3+2x6189a5+&c et area AVDB=axx39ax5225a32x76615a5&c Et arcus VD=x+2x327aa0 +14x52025a4+604x7893025a6+&c. Unde vicissim ex dato BD, vel VT, aut areâ AVDB arcuve VD, resolutionem affectarum æquationum erui potest x seu AB.

9 Esto deniq AEB sphæroides, revolutione Ellipseos Figure AEB circa axem AB genita, & secta planis quatuor, AB per axem transeunte, DG parallelo AB, CDE \perpendiculariter bisecante axem, et FC parallelo/ CE: sitq recta CB=a. CE=c. CF=x. & FG=y; et sphæroideos segmentum CDFG, dictis quatuor planis compr{illeg}|e|hensum erit.
+2cxyx3cy3x20c3y5x56c5y75x576c7y9&c cx33aax318caax340c3aa5x3336c5aa&c. cx520a4x540ca43x5160c3a4&c. cx756a65x7336ca6&c 5cx9576a7&c. &c.
Ubi numerales coefficientes supremorum terminorum 2,13,120,156,5576&c in infinitum producuntur multiplicando primum coefficientem 2 continuò per terminos hujus progressionis 1×12×3.1×34×5.3×56×75×78×97×910×11.&c Et numerales coefficientes terminorum in unaquaq coluna descendentium in infinitum producuntur multiplicanda|o| continuò coefficientem supremi termini in prima columna per eandem progressionem, in secunda autem per terminos hujus 1×12×3.3×34×5.5×56×77×78×9.9×910×11&c; in tertia per terminos hujus 3×12×3.5×34×5.7×56×7.9×78×9.&c, in quarta per terminos huius 5×12×3.7×34×5.9×56×7.&c, in quinta terminos huius 7×12×3.9×34×5 11×56×7.&c {Ac} sic in infinitum, et eodem modo segmenta aliorum solidorum designari, et valores eorum aliquando commodè per series quasdem {illeg}|num|erales in infinitum produci possunt.

Ex his videre est quantum fines Analyseos per hujusmodi infinitas æquationes ampliantur: quippe quæ earum beneficio, ad omnia, pene dixerim, problemata (si numeralia Diophanti et similia excipias) sese extendit non tamen omninò universalis evadit, nisi per ulteriores quasdem methodos eliciendi series infinitas. Sunt enim quædam Problemata in quibus non liceat ad series infinitas per divisionem vel extractionem radicum simplicium affectarumve pervenire: Sed quomodo in istis casibus procedendum sit jam non vacat dicere; ut neq alia quædam tradere quæ circa reductionem infinitarum serierum in finitas, ubi rei natura tulerit, excogitavi. Nam {hisce} quanquam paucis scribendi fatigor, utpote cui \parcius scribo quòd/speculationes diu \mihi/ fastidio esse cœperunt, adeò ut ab ijsdem jam per quinq ferè annos abstinuerim. Unum tamen addam: quod postquam Problema aliquod ad infinitam æquationem deducitur, possi\n/t inde variæ approximationes in usum Mechanicæ nullo ferè negotio formari, quæ per alias methodos quæsitæ, multo labore temporisq dispendio constare solent Cujus rei exemplo esse possunt Tractatus Hugenij aliorumq de quadratu\ra/ circuli. Nam ut ex data Arcûs chorda A & dimidij arcus chorda B arcum illum proxime assequaris, finge arcum illum esse Z, et circuli radium r; juxtaq superiora erit A (nempe duplum sinûs dimidij z) =z z34×6rr+z54×4×120r4&c. Et B=12zz32×16×6rr <4r> +z52×16×16×120r4&c. Duc jam B in numerum fictitium n & a producto aufer A, et residui secundum terminum (nempe nz32×16×6rr+z34×6rr, eo ut evanescat, pone =0, indeq emerget n=8, & erit 8BA=3z3z564×120r4+&c: hoc est 8BA3=z errore tantum existente z57680r4&c in excessu. Quod est Theorema Hugenianum.

Insuper si in arcûs Bb sagittâ AD indefinitè productâ Figure quæratur punctum G à quo actæ rectæ GB, Gb abscindant tangentem Ee quamproximè æqualem arcui isti: esto circuli centrum C diameter AK=d, et sagitta AD=x et erit DB =dxxx = d12x12x322d12x528d32x7216d52&c. Et AE=AB=d12x12+x326d12+3x5240d32+5x72112d52+&c. Et AEDB.ADAE.AG. Quare AG=32d15x12xx175dvel+&c. Finge ergo AG=32d15x, et vicissim erit DG32d65x.DBDA.AEDB. Quare AEDB=2x323d12+x525d32+23x72300d52+&c. Adde AB et prodit AE=d12x12+ x326d12+3x5240d32+17x721200d52+&c. Hoc aufer de valore ipsius AE supra habito et restabit error 16x72525d52+vel&c. Quare in AG cape AH quintam partem DH, et KG=HC; & actæ GBE, Gbe abscindent tangentem Ee quamproximè æqualem arcui Bab errore tantum existente 32x3525d3dx+vel&c; multò minore scilicet quam in Theoremate Hugenij. Quod si fiat 7AK.3AHDH.n, & capiatur KG=CHn erit error adhuc multò minor.

Atq ita si circuli segmentum aliquod BAb per Mechanicam designandum esset: primo reducerem aream istam in infinitam seriem; puta hanc BbA= 43d12x322x525d12x7214d32x9236d52&c; dein quærerem constructiones mechanicas quibus hanc seriem proximè assequere|r|; cujusmodi sunt hæc. Age rectam AB, & erit Segmen: BbA=23AB+BD×45AD proximè, existente scilicet errore tantum x370dddx+&c, in defectu: vel proximiùs erit segmentum illud, (bisecto AD in F et acta recta BF,) =4BF+AB15×4AD, existente errore solummodo x3560dddx+&c. qui semper minor est quàm 11500 totius segmenti, etiamsi segmentum illud ad usq semicirculum augeatur.

Sic in Ellipsi BAb cujus vertex A, axis alteruter AK, et latus re{illeg}|c|tum AP, cape PG=12AP+19AK21AP10AK×AP; in Hyperbola verò cape PG=12AP+19AK+21AP10AK×AP: et acta recta GBE abscindet tangentem AE quamproximè æqualem arcui Elliptico vel Hyperbolico AB, dummodo ar{cus} ille non sit nimis magnus. Et pro area segmenti Hyperbolici BbA, dic latus rectum d, latus transversum e, et AD x; et cape m=dx et n=dx+3d4exx eritq 4n+m15×4AD=BbA; vel forte melius cape n=dx+5d7exx, et erit 21n+4m75×4AD=BbA.

Et ejusdem methodi vestigijs insistendo.

© 2017 The Newton Project

Professor Rob Iliffe
Director, AHRC Newton Papers Project

Scott Mandelbrote,
Fellow & Perne librarian, Peterhouse, Cambridge

Faculty of History, George Street, Oxford, OX1 2RL - newtonproject@history.ox.ac.uk

Privacy Statement

  • University of Oxford
  • Arts and Humanities Research Council
  • JISC