Catalogue Entry: OTHE00088

Chapter XXVII

Author: David Brewster

Source: Memoirs of the Life, Writings, and Discoveries of Sir Isaac Newton, vol. 2 (Edinburgh: 1855).

[Normalized Text] [Diplomatic Text]

[1]

This valuable faculty characterizes all his writings whether theological, chemical, or mathematical; but it is peculiarly displayed in his Treatise on Universal Arithmetic, and in his Optical Lectures.

[2]

De Magnete, pp. 42, 52, 169, and Preface, p. 30.

[3]

See Essai sur les Ouvrages Physico-mathématiques de Leonard de Vinci, par J. B. Venturi. Paris, 1799, pp. 32, 33, &c. See also Carlo Amoretti's Memorie storiche su lu vita gli studi e le Opere de Leonardo da Vinci. Milano, 1804.

[4]

"The man who first discovered that cold freezes water, and that heat turns it into vapour, proceeded on the same general principles and on the same method by which Newton discovered the law of gravitation, and the properties of light. His Regulæ Philosophandi are maxims of common sense, and are practised every day in common life; and he who philosophizes by other rules, either concerning the material system or concerning the mind, mistakes his aim." — Reid's Inquiry into the Human Mind. Introduction.

[5]

1 The following interesting anecdote is related in Conduitt's MSS.: — "When Sir A. Fountaine was at Berlin with Leibnitz in 1701, and at supper with the Queen of Prussia, she asked Leibnitz his opinion of Sir Isaac Newton. Leibnitz said that taking mathematicians from the beginning of the world to the time when Sir Isaac lived, what he had done was much the better half; and added that he had consulted all the learned in Europe upon some difficult points without having any satisfaction, and that when he applied to Sir Isaac, he wrote him in answer by the first post, to do so and so, and then he would find it."

[6]

The following anecdote is recorded by Conduitt, as showing Sir Isaac's indifference to fame: — "Mr. Molyneux related to us that after he and Mr. Graham and Dr. Bradley had put up a perpendicular telescope at Kew, to find out the parallax of the fixed stars, they found a certain nutation of the earth which they could not account for, and which Molyneux told me he thought destroyed entirely the Newtonian system; and therefore he was under the greatest difficulty how to break it to Sir Isaac. And when he did break it by degrees, in the softest manner, all Sir Isaac said in answer was, when he had told me his opinion, 'It may he so, there is no arguing against facts and experiments, — so cold was he to all sense of fame at a time when, as Tillotson said, a man has formed his last understanding.'" This conversation must have taken place in 1726, when Molyneux's instrument was in use at Kew; but the nutation, though proposed at that time as an explanation of the change of declination of γ Draconis, was not discovered till 1747 by Bradley. — See Rigaud's Life of Bradley, p. lxii. and pp. 2, 3.

[7]

Mr. Hearne, in a memorandum dated April 4, 1726, states that a great quarrel happened between Sir Isaac Newton and Mr. Halley. We have not been able to find any traces of it. If we suppose the above date to be 1727, the rumour of a quarrel may have originated in the fact, that on the 2d March 1727, Sir Isaac had called attention to the omission on Halley's part, as Astronomer-Royal, to send to the Society a copy of his Annual Observations, as required by the late Queen's letter. — See Memoirs of the Astronomical Society, vol. viii, p. 188.

[8]

"Whiston," says Mrs. Conduitt, "had spread it abroad that Sir Isaac abstained from eating rabbits because strangled, and from black puddings, because made of blood. This," she adds, "is not true. Sir Isaac said that meats strangled were forbidden, because that was a painful death, and the letting out the blood the easiest, — that animals should be put to as little pain as possible, and that the reason why eating blood was forbidden, was because it was thought eating of blood inclined men to be cruel. — C. C."

[9]

Pope's letter to Conduitt. See APPENDIX, No. XXVII.

[10]

Conduitt's MSS.

[11]

This anecdote, which may relate to the putting up of pictures in churches, I have given in the words of Mrs. Conduitt, with whose initials it is signed.

[12]

"He was very kind to all the Ayscoughs. To one he gave £800, to another £200, and to a third £100, and many other sums; and other engagements did he enter into also for them. He was the ready assistant of all who were any way related to him, — to their children and grandchildren." — Annual Register, 1776, vol. xix. p. 25. He gave a regular allowance to his niece, Mrs. Pilkington, and on the 12th August 1725, he presented £100 to Mary Clarke to "augment her portion."

[13]

He gave money to Stirling, and brought him from Venice; and in 1719 and 1720 he presented to Pound, the astronomer, one hundred guineas, in two gifts of fifty guineas each. — Rigaud's Bradley, p iii., in note

[14]

In 1687-8 he had a law-suit with Mr. Storer, his tenant at Woolsthorpe, in order to compel him to scour the drains, and repair the thatch, and the walls, and palings of the swine-cot and cow-house, which he was bound by his lease to leave in good order. I have found the scroll of a long and characteristic letter addressed to a friend, "who had undertaken the office of an arbitrator." He thanks him for doing so, and expresses his hearty wish that he "may inherit the blessing promised to peace-makers." — See APPENDIX, No. XXXIII.

There is another scroll of a short letter to "Cosin John Newton," his heir-at-law, written about May 1720, and of a similar character. "I understand," he says, "that Thomas Hubbard agreed with you to leave his farm at Lady-day next, and that I was to allow him ten pounds for his manure. But now I am told that he would become tenant to it at eleven pounds per annum. This would be departing from the bargain already made, in order to make a new one. But there being sufficient witnesses of the bargain already made, I expect that he stand to it, and I desire you to demand it of him in my name, and to send me his answer, if he refuses to sign articles pursuant to what has been already agreed upon."

[15]

Conduitt's MSS.

[16]

Id.

[17]

Conduitt's MS.

[18]

Id.

[19]

See this volume, pp. 89 and 93.

[20]

Epistolary Correspondence, vol. i. p. 180. Sect. 77.

[21]

MSS. Memoranda in the Bodleian Library.

[22]

It is not true, as has been stated, that the original of this bust is in the possession of the Marquis of Lansdowne. The bust of Newton at Bowood Park is a copy of the one in the Library of Trinity, executed for his Lordship by Bailey.

[23]

"I have taken," says Dr. Stukely, "several sketches from his side face, which are very like him. I being present with him and Sir Godfrey (Kneller) at painting <415> his great picture to be sent to France, desired Sir Isaac to let Sir Godfrey paint his side face, a profile as we call it, for me. 'What!' said Sir Isaac, 'would you make a model of me ?' and refused it, though I was then in highest favour with him." — Stukely's Letter to Conduitt, Grantham, July 22, 1727.

[24]

Turnor's Collections, p.176.

[25]

The original of these lines, which we have seen in Pope's own handwriting, is slightly different, and inferior to those in the text: —

Nature and all her laws lay hid in night,

God said, "Let Newton be," and all was Light.

[26]

1 The anecdote of the falling apple is not mentioned by Dr. Stukely, nor by Pemberton, who conversed with Newton about the origin of his discoveries, and mentions the anecdote of Newton's sitting in a garden. I find, however, a reference to an apple in the following memorandum by Conduitt. "In the same year, (at his mother's in Lincolnshire,) when musing in a garden it came into his thoughts that the same power of gravity, which made an apple fall from the tree to the ground, was not limited to a certain distance." See vol. i. p. 27, note.

After quoting some interesting passages from Kepler on gravity, Mr. Drinkwater Bethune justly remarks, "Who, after perusing such passages in the works of an author which were in the hands of every student of astronomy, can believe that Newton waited for the fall of an apple to set him thinking for the first time on the theory which has immortalized his name? An apple may have fallen, and Newton may have seen it; but such speculations as those which it is asserted to have been <417> the cause of originating in him, had been long familiar to the thoughts of every one in Europe pretending to the name of Natural Philosopher." — Life of Kepler, p. 24. See vol. i. p. 268.

[27]

"This is to acquaint you," says N. Facio, "that I have agreed with Mr. Benjamin Steele, the watchmaker, at £15, for him to make the watch for Dr. Bentley. It will be with four pierced rubies and four diamonds, and I hope will be worth the money." — Letter to Newton, dated Worcester, June 15, 1717.

[28]

This date is obviously an error, as Miss Barton did not become Mrs. Conduitt till 1717. Professor De Morgan, who examined it, says, "that any one who looks at the inscription will see that it is not an old watch. It is neither ornamented nor placed in a shield or other envelope, while the case is beautifully chased, and has an elaborate design representing Fame and Britannia examining the portrait of Newton." — Notes and Queries, No. 210, p. 430. The dial-plate is obviously new. Mr. Turnor, in whose possession I saw the watch, told me that he purchased it in the Curiosity Shop at WarwicK.

[29]

In the woodcut the light parts are silver, and the dark ground is filled up with a substance which is dark in all the compartments and shields containing numbers, and reddish in the merely ornamental portions.

[30]

The following is the explanation given by M. Otto Struve: —

"The engravings compose a perpetual Julian Kalendar, and one very complete for the first 38 years of the last century, but which may still be partly used at the present day and in the future.

"1. The Lid of the Box.

"The numbers in the 19 shields which form its periphery, give in the first lines the dates of Easter for the years from 1700 to 1738. The month of March is there indicated by:, the month of April by A. In a shield (the 12th) we find also the sign + in the middle of two numbers of the first line, (1 + 29.) The sign here indicates that the first number belongs to the month of April, and the second to the month of March. In all the other cases the two numbers of the first line are those of the months indicated by the signs above mentioned.

"Each shield refers to two years, which are 19 years distant from one another. The first shield, which relates to the years 17OO and 1719, is that which is placed above the crown, (beneath the Hamilton Arms,) and a little to the right. In setting out from this first shield in a direction to the right, the numbers in the second line indicate the two years after 1700 to which Easter corresponds in the first line. Such numbers are found only in each fourth shield between which the numbers corresponding to the intermediate years ought to be supplied. In place of numbers, the second line presents to us, for these intermediate years, the initials of the days of the week which refer to the dates given in the central square of the lid. All the dates in this central square fall upon the same day of the week, indicated for each year by the initials which we read in the second and in the third line of the peripheral shields. The sign + which we find near some of the initials, indicates that the corresponding year is leap year, and that for this reason the days of the week have made leaps of two days. In the shields where there are numbers in place of initials, we must supply the days of the week with the assistance of the initials in the adjoining shields.

"The initials in the third line of the peripheral shields are only the continuation of those in the second line. The numbers in the third line are the golden numbers, and correspond equally to the two years indicated in the second line. The large cross ✠ which is in the eleventh shield for the year 1710, indicates that in this year a new lunar cycle commences. For this year the golden number is 1. As in the second line in the shields, and also in the third line where there is no mark of initials, we must supply them with the assistance of the adjacent shields, and vice versa for the numbers.

"With respect to the central square, we must still add that the Roman numerals indicate the month, — No. I. signifying March; II. April, and so on. The Arabic <420> numerals are the days of the month indicated above or below, to which correspond the initials of the days of the week in the peripheral shields. It is thus that, for example, for the year 1700 all the dates of the central square are Monday, for 1710 Saturday, &c. This part of the Kalendar may find an application even at present. For this purpose we must subtract 1700 from the year in question, and divide the difference by 28. The remainder is the year of the solar cycle for which we must seek in the peripheral shields the initial of the day of the week which corresponds, for the year in question, to the dates furnished by the central square.

"2. The Bottom of the Box.

"In the central rectangle the small arrows attached to the numbers point to the true solar time of sunset for the beginning of each month, Old Style, where they give the numbers of hours between the true noon and the rising or setting of the sun, that is, the semi-diurnal arc of the sun for the date in question. The months are there indicated as on the lid by Roman cyphers. The Arabic numerals 4, 5, &c., are the entire hours, the half-hours being indicated fleur-de-lys, and the quarters by points, and it is possible to obtain from this table the time required to two or three minutes nearly. This table is suited nearly to the latitude of London, the computer having neglected the effect of refraction.

"The elliptical compartments, both above and below the central rectangle, contain the equation of time. The letters in it are the initials of the names of the month, and the numbers indicate either the days of the month, or the quantity of the equation of time. The sign of the sun signifies that at the four dates near which it is found, the equation of time is zero. These four dates divide the year into four periods. For each of these periods the elliptical compartments give with their corresponding dates the maximum of the equation of time expressed in minutes and in seconds. In the two periods when this equation is greatest, we find also the dates at which the equation is 14, 12, or 34 of the corresponding maximum. The sign ⏞ is a little obscure, but it may be satisfactorily explained if we suppose it to indicate that the numbers which are under it do not belong to the preceding maximum of the equation.

"The legend on the right side of the central rectangle gives the time of high water for the days of full moon, but these times differ considerably from those now observed.

"The legend on the left hand of the central rectangle is still a little enigmatic. The supposition of M. Quetelet, that the numbers in it are more precise indications of the hours of sunrise and sunset, cannot be correct, for these hours are given with more precision in the central rectangle. The constant difference of 48 minutes between each adjacent couple of numbers, makes us suppose, on the contrary, that these numbers relate to the relative diurnal motion of the sun and moon, which is confirmed also by the words in the legend.

"OTTO STRUVE.

"POULKOVA, 131 April 1853."

[31]

The word Sou may mean Setting or Southing. Shin means Shining or Rising. <421> Upon the more probable supposition that Sou means Setting, the legend directs us to go Round for Setting, and Back for Rising, which would give —

FROM BOX.FROM HOPTON'S
"CONCORDANCY
OF YEARES."
Setting.Rising.Setting.Rising. January,4h 0′8h 0′4h 0′8h 0′ February,4 487 124 457 13 March,5 366 245 416 19 April,6 245 366 425 18 May,7 124 487 354 25 Beginning ofJune,8 04 08 93 51 July,8 04 08 04 0 August,7 124 487 174 43 September,6 245 366 195 41 October,5 366 245 246 26 November,4 487 124 267 34 December,4 08 03 508 10

The last two columns are a part of the table of the sun's rising and setting from Arthur Hopton's "Concordancy of Yeares," 1616. In the last column of this table 7h 13′ is a misprint for 7h 15′.

"If sou is to be read southing, it means that the southing is 4h, 4h 48′, &c., after rising; but this is not the most likely meaning."

[32]

This tract, entitled Isaaci Newtoni Propositiones de Motu, forms No. I. of the Appendix to Professor Rigaud's Historical Essay on the Principia.

© 2022 The Newton Project

Professor Rob Iliffe
Director, AHRC Newton Papers Project

Scott Mandelbrote,
Fellow & Perne librarian, Peterhouse, Cambridge

Faculty of History, George Street, Oxford, OX1 2RL - newtonproject@history.ox.ac.uk

Privacy Statement

  • University of Oxford
  • Arts and Humanities Research Council
  • JISC